+852-3069 6950
sales@gugent.com.hk
 

Thin layer chromatography (TLC) and high performance thin layer chromatography (HPTLC), also called planar chromatography are based on a multistage distribution process involving

* Suitable adsorbents (the stationary phase) coated as a thin layer onto a suitable support / backing (e.g., glass plate, polyester or aluminum sheet)

* Solvents or solvent mixtures (the mobile phase or eluent)

* Sample molecules (analytes)

Today TLC has gained increasing importance as an analytical separation technique, which is probably due to effects of instrumentation and automation. At the same time the applicability of thin layer chromatography was enhanced by development of new adsorbents and backings. MACHEREY-NAGEL offers a versatile range of ready-to-use layers, which are the result of 50 years of continuous research and development.


Catalog No. Product Net Price
MN808023 TLC glass plates CEL 300 UV254, cellulose, 0.1 mm, 20x20 cm Special offer 
Add to Cart
  • Hazardous material
  • No
  • Method
  • Thin layer chromatography (TLC)
  • Brand
  • CEL 300
  • Phase
  • CEL 300 UV254
  • Mode
  • Normal phase (NP)
  • Base material
  • Glass plates coated with cellulose
  • Surface chemistry
  • Native fibrous cellulose
  • Recommended application(s)
  • Amino acids, Carbohydrates, Carboxylic acids, Polar substances
  • Particle type
  • Fully porous particles (FPP)
  • Particle size
  • 2–20 µm
  • Particle shape
  • Irregular
  • pH stability
  • 2.0–8.0
  • Storage temperature
  • RT
MN808033 TLC glass plates CEL 300, cellulose, 0.25 mm, 20x20 cm Special offer 
Add to Cart
  • Hazardous material
  • No
  • Method
  • Thin layer chromatography (TLC)
  • Brand
  • CEL 300
  • Phase
  • CEL 300
  • Mode
  • Normal phase (NP)
  • Base material
  • Glass plates coated with cellulose
  • Surface chemistry
  • Native fibrous cellulose
  • Recommended application(s)
  • Amino acids, Carbohydrates, Carboxylic acids, Polar substances
  • Particle type
  • Fully porous particles (FPP)
  • Particle size
  • 2–20 µm
  • Particle shape
  • Irregular
  • pH stability
  • 2.0–8.0
  • Storage temperature
  • RT
MN808043 TLC glass plates CEL 300 UV254, cellulose, 0.25 mm, 20x20 cm Special offer 
Add to Cart
  • Hazardous material
  • No
  • Method
  • Thin layer chromatography (TLC)
  • Brand
  • CEL 300
  • Phase
  • CEL 300 UV254
  • Mode
  • Normal phase (NP)
  • Base material
  • Glass plates coated with cellulose
  • Surface chemistry
  • Native fibrous cellulose
  • Recommended application(s)
  • Amino acids, Carbohydrates, Carboxylic acids, Polar substances
  • Particle type
  • Fully porous particles (FPP)
  • Particle size
  • 2–20 µm
  • Particle shape
  • Irregular
  • pH stability
  • 2.0–8.0
  • Storage temperature
  • RT
MN808053 TLC glass plates CEL 300, cellulose, 0.5 mm, 20x20 cm Special offer 
Add to Cart
  • Hazardous material
  • No
  • Method
  • Thin layer chromatography (TLC), preparative (PLC)
  • Brand
  • CEL 300
  • Phase
  • CEL 300
  • Mode
  • Normal phase (NP)
  • Base material
  • Glass plates coated with cellulose
  • Surface chemistry
  • Native fibrous cellulose
  • Recommended application(s)
  • Amino acids, Carbohydrates, Carboxylic acids, Polar substances
  • Particle type
  • Fully porous particles (FPP)
  • Particle size
  • 2–20 µm
  • Particle shape
  • Irregular
  • pH stability
  • 2.0–8.0
  • Storage temperature
  • RT
MN808063 TLC glass plates, cellulose, CEL 300 UV254, 0.5 mm, 20x20 cm Special offer 
Add to Cart
  • Hazardous material
  • No
  • Method
  • Thin layer chromatography (TLC), preparative (PLC)
  • Brand
  • CEL 300
  • Phase
  • CEL 300 UV254
  • Mode
  • Normal phase (NP)
  • Base material
  • Glass plates coated with cellulose
  • Surface chemistry
  • Microcrystalline cellulose
  • Recommended application(s)
  • Carboxylic acids, Lower alcohols, Purine derivatives, Urea derivatives
  • Particle type
  • Fully porous particles (FPP)
  • Particle size
  • 2–20 µm
  • Particle shape
  • Irregular
  • pH stability
  • 2.0–8.0
  • Storage temperature
  • RT
MN808072 TLC glass plates CEL 400, microcrystalline cellulose layer, 10x20 cm Special offer 
Add to Cart
  • Hazardous material
  • No
  • Method
  • Thin layer chromatography (TLC)
  • Brand
  • CEL 400
  • Phase
  • CEL 400
  • Mode
  • Normal phase (NP)
  • Base material
  • Glass plates coated with cellulose
  • Surface chemistry
  • Microcrystalline cellulose
  • Recommended application(s)
  • Carboxylic acids, Lower alcohols, Purine derivatives, Urea derivatives
  • Particle type
  • Fully porous particles (FPP)
  • Particle shape
  • Irregular
  • pH stability
  • 2.0–8.0
  • Storage temperature
  • RT
MN808073 TLC glass plates CEL 400, microcrystalline cellulose layer, 20x20 cm Special offer 
Add to Cart
  • Hazardous material
  • No
  • Method
  • Thin layer chromatography (TLC)
  • Brand
  • CEL 400
  • Phase
  • CEL 400
  • Mode
  • Normal phase (NP)
  • Base material
  • Glass plates coated with cellulose
  • Surface chemistry
  • Microcrystalline cellulose
  • Recommended application(s)
  • Carboxylic acids, Lower alcohols, Purine derivatives, Urea derivatives
  • Particle type
  • Fully porous particles (FPP)
  • Particle shape
  • Irregular
  • pH stability
  • 2.0–8.0
  • Storage temperature
  • RT
MN811055 HPTLC/TLC glass plates, silica layer with chiral selector, CHIRALPLATE, 10x20 cm Special offer 
Add to Cart
  • Hazardous material
  • No
  • Method
  • Thin layer chromatography (HPTLC/TLC)
  • Phase
  • CHIRALPLATE
  • Mode
  • Reversed phase (RP) with ligand exchange
  • Base material
  • Glass plates coated with impregnated silica gel
  • Surface chemistry
  • Silica gel impregnated with Cu(II) ions and a chiral selector (proline derivative)
  • Recommended application(s)
  • Amino acids, Dipeptides, Enantiomers, Lactones, N-formylamino acids, N-methylamino acids, Thiazolidine derivatives, α-alkylamino acids, α-hydroxycarboxylic acids
  • Particle type
  • Fully porous particles (FPP)
  • Particle shape
  • Irregular
  • pH stability
  • 2.0–8.0
  • Storage temperature
  • RT
MN811056 HPTLC/TLC glass plates, silica layer with chiral selector, CHIRALPLATE, 10x20 cm Special offer 
Add to Cart
  • Hazardous material
  • No
  • Method
  • Thin layer chromatography (HPTLC/TLC)
  • Phase
  • CHIRALPLATE
  • Mode
  • Reversed phase (RP) with ligand exchange
  • Base material
  • Glass plates coated with impregnated silica gel
  • Surface chemistry
  • Silica gel impregnated with Cu(II) ions and a chiral selector (proline derivative)
  • Recommended application(s)
  • Amino acids, Dipeptides, Enantiomers, Lactones, N-formylamino acids, N-methylamino acids, Thiazolidine derivatives, α-alkylamino acids, α-hydroxycarboxylic acids
  • Particle type
  • Fully porous particles (FPP)
  • Particle shape
  • Irregular
  • pH stability
  • 2.0–8.0
  • Storage temperature
  • RT
MN811057 HPTLC/TLC glass plates, silica layer with chiral selector, CHIRALPLATE, 5x20 cm Special offer 
Add to Cart
  • Hazardous material
  • No
  • Method
  • Thin layer chromatography (HPTLC/TLC)
  • Phase
  • CHIRALPLATE
  • Mode
  • Reversed phase (RP) with ligand exchange
  • Base material
  • Glass plates coated with impregnated silica gel
  • Surface chemistry
  • Silica gel impregnated with Cu(II) ions and a chiral selector (proline derivative)
  • Recommended application(s)
  • Amino acids, Dipeptides, Enantiomers, Lactones, N-formylamino acids, N-methylamino acids, Thiazolidine derivatives, α-alkylamino acids, α-hydroxycarboxylic acids
  • Particle type
  • Fully porous particles (FPP)
  • Particle shape
  • Irregular
  • pH stability
  • 2.0–8.0
  • Storage temperature
  • RT

Overview

The success of thin layer chromatography as a highly efficient microanalytical separation method is based on a large number of advantageous properties:


High sample throughput in a short time

Suitable for screening tests

Pilot procedure for HPLC and Flash chromatography

After separation the analytical information can be stored for a longer period of time (the TLC ready-to-use layer acts as storage medium for data)

Separated substances can be subjected to subsequent analytical procedures (e.g., IR, MS) at a later date

Rapid and cost-efficient optimization of the separation due to easy change of mobile and stationary phase



Resources